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Inertial convection in a fluid contained in a rotating cylinder heated uniformly from
below is investigated on the basis of the assumption that convection at leading order
can be represented by a single or several inertial wave modes which propagate either in
the prograde or retrograde direction. Buoyancy forces appear at the next order to drive
inertial convection against the effect of viscous damping. Asymptotic expressions for
inertial convection for four different combinations of the sidewall boundary condition
are derived for a cylinder of arbitrary aspect ratio. New convection patterns in
rotating cylinders are revealed by the asymptotic analysis. A fully numerical solution
of the same problem is also carried out, demonstrating a quantitative agreement
between the asymptotic and numerical analysis.

1. Introduction
Through both experimental and theoretical studies, considerable progress has been

made in the understanding of convective motions in a fluid-filled cylinder of depth d

uniformly heated from below and rotating about its vertical axis with angular velocity
Ω . Different convection modes have been identified in rotating cylinders. On the one
hand, there are bulk modes which fully occupy the interior of the cylinder and which
are modified forms of convection found in the non-rotating case (see, for example,
Zhong, Ecke & Steinberg 1991; Goldstein et al. 1993). For small Prandtl numbers,
Goldstein et al. (1994) showed numerically that there exists an exceedingly complicated
behaviour at the onset of convection, including the multiplicity of convection modes
at a given azimuthal wavenumber. On the other hand, wall-attached convection is
found at sufficient high rates of rotation in which case the convective motions are
concentrated in the vicinity of the sidewall (Zhong et al. 1991; Goldstein et al. 1993;
Liu & Ecke 1999). In more detailed experimental studies, the coefficients of the
Ginzburg–Landau envelope equation describing the weakly nonlinear wall-localized
convection have been determined through measurements (Liu & Ecke 1999) and
through theoretical studies (see, for example, Plaut 2003). It is important to note,
however, that the wall-localized convection represents a boundary-layer phenomenon
and, hence, cylindrical geometry plays an insignificant role (Davies-Jones & Gilman
1971; Herrmann & Busse 1993; Kuo & Cross 1993; Liao, Zhang & Chang 2005).

The present paper is concerned with convection in a rapidly rotating cylinder
for which the Ekman number E = ν/(Ωd2), where ν is kinematic viscosity of the
fluid, is sufficiently small, i.e. E � 1. It is found that there exist two fundamentally
different types of convection: (i) inertial convection is preferred for fluids with small
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or moderately small Prandtl numbers and (ii) wall-localized convection is preferred
for fluids with intermediate or large Prandtl numbers. Inertial convection refers to
fluid motions approximately represented by a single or several inertial wave modes
and energetically driven by thermal buoyancy against the effect of viscous dissipation
(see, for example, Zhang 1994; Busse & Simitev 2004). It is closely associated with
non-axisymmetric inertial waves in a rapidly rotating cylinder. Only at low rotation
rates could axisymmetric convection possibly be realized. Inertial waves describe
oscillatory motions in a contained rigidly rotating homogeneous fluid which are
influenced weakly by viscous dissipation occurring in the boundary layers adjacent
to the bounding surfaces of the container as well as in its interior (see, for example,
Greenspan 1968; Kerswell & Barenghi 1995).

The study in this paper focuses on inertial convection in rapidly rotating cylinders
filled with fluids of small or moderately small Prandtl number. We derive the
first asymptotic solution of inertial convection in a rotating cylinder of arbitrary
aspect ratio for various combinations of thermal and velocity conditions on the
sidewall. We also undertake a fully numerical analysis of the problem, showing
a satisfactory quantitative agreement between the asymptotic expressions and the
numerical solutions. The result of the study provides a natural bridge between two
usually disjoint problems in rotating fluids: thermal convection and inertial oscillation.
It also reinforces the idea that a key ingredient in the dynamics of rotating convection
is the intricate interplay between the constraint of rotation and inertial and viscous
effects.

It is important to recognize that there exist at least two fundamental differences
between inertial convection in cylindrical and spherical geometries. In spherical
geometry, the quasi-geostrophic inertial mode (Zhang et al. 2001) has a radial
component and is directly relevant to inertial convection. The geostrophic mode
in cylindrical geometry, however, does not possess a vertical component and is
thus irrelevant to convective instabilities. It follows that the inertial wave modes
that have the smallest frequencies are relevant to the fluid motions of inertial
convection in spherical geometry (Zhang & Liao 2004), while the opposite is true for
inertial convection in cylindrical geometry: the inertial wave modes with the largest
frequencies are usually related to inertial convection in cylindrical geometry. More
intriguingly, Zhang et al. (2001) showed that in spherical geometry,∫

V

u∗ · ∇2u dV ≡ 0, (1.1)

where u is the velocity of any three-dimensional inertial wave, u∗ is its complex
conjugate and V denotes the volume of the fluid domain. This property of the
vanishing integral has been used in the asymptotic analysis of inertial convection in
spherical geometry (Zhang 1994). In cylindrical geometry, however, it can be shown
that ∫

V

u∗ · ∇2u dV = −
(

nπ

dσ

)2 ∫
V

|u|2 dV < 0, (1.2)

where σ denotes the half-frequency of a three-dimensional inertial wave and n � 1
with (n − 1) denoting the number of zeros of the vertical velocity as a function of the
height of the cylindrical layer. Property (1.2) offers an advantage in the derivation of
asymptotic solutions for inertial convection in the cylindrical geometry.

In what follows we shall begin by presenting the mathematical equations of the
problem in § 2. The numerical analysis of the problem is discussed in § 3 and asymptotic
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solutions for inertial convection are derived and presented in § 4. The paper closes in
§ 5 with a summary and a few remarks.

2. Mathematical formulation
We consider a Boussinesq fluid in a cylinder of radius so with constant thermal

diffusivity κ , thermal expansion coefficient α and kinematic viscosity ν. The cylinder
is rotating uniformly about its axis with a constant vertical angular velocity Ω in the
presence of a constant gravitational field

g = −g ẑ, (2.1)

and is heated uniformly from below to produce an unstable vertical temperature
gradient,

∇T0 = −β ẑ, (2.2)

where β is a positive constant and cylindrical coordinates (s, φ, z), with the

corresponding unit vectors (ŝ, φ̂, ẑ) and ẑ parallel to the axis of rotation, are used.
Making use of the depth of the layer d as the length scale, Ω−1 as the unit of time
and βd3Ω/κ as the unit of temperature fluctuations of the system, the problem of
linear convective instability is governed by the equations

i2σ u + 2 ẑ × u = −∇p + RΘ ẑ + E∇2u, (2.3)

∇ · u = 0, (2.4)

i2(Pr/E)σΘ = ẑ · u + ∇2Θ, (2.5)

where u is the three-dimensional velocity field, (us, uφ, uz), and σ is the half-frequency
of inertial convection. In cylindrical coordinates, we may write solutions of the
equations in the form

(us, uφ, uz, Θ)(s, φ, z, t) = (us, uφ, uz, Θ)(s, z)ei(2σ t+mφ), (2.6)

where m is the azimuthal wavenumber which we assume to be positive. The wave
propagates in the prograde direction when σ < 0 while it propagates in the retrograde
direction when σ > 0. The temperature deviation from the purely conductive state,
T0(z), is represented by Θ , and the non-dimensional physical parameters – the Rayleigh
number R, the Prandtl number Pr and the Ekman number E – are defined as

R =
αβgd2

Ωκ
, Pr =

ν

κ
, E =

ν

Ωd2
.

The geometric parameter is given by the aspect ratio Γ , defined as Γ = s0/d . As in
the previous studies (see, for example, Goldstein et al. 1993; Herrmann & Busse
1993), we shall assume perfectly conducting and stress-free conditions on the top and
bottom of the cylinder, which permits separable solutions of the linear problem. We
study inertial convection with four combinations of the boundary conditions on the
sidewall of the cylinder:

(i) stress-free, impenetrable and perfectly conducting,

∂

∂s

(
uφ

s

)
=

∂uz

∂s
= us = Θ = 0 at s = Γ ; (2.7)
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(ii) stress-free, impenetrable and perfectly insulating,

∂

∂s

(uφ

s

)
=

∂uz

∂s
= us =

∂Θ

∂s
= 0 at s = Γ ; (2.8)

(iii) non-slip, impenetrable and perfectly conducting,

uφ = uz = us = Θ = 0 at s = Γ ; (2.9)

(iv) non-slip, impenetrable and perfectly insulating,

uφ = uz = us =
∂Θ

∂s
= 0 at s = Γ. (2.10)

Equations (2.3)–(2.5) subject to any set of the boundary conditions in (2.7)–(2.10)
form a convective stability problem which will be solved by both numerical and
asymptotic analysis. It should be pointed out that the assumption of the stress-free
top and bottom, leading to the separation of variables, dramatically simplifies the
mathematical analysis of the problem. In this case, the z-dependence of the convection
solution can be simply written as

uφ ∼ cos nπz, uz ∼ sin nπz, us ∼ cos nπz, Θ ∼ sin nπz,

where n is a non-zero integer.

3. Numerical analysis
We expect convection in rapidly rotating cylinders to be non-axisymmetric

(Goldstein et al. 1993). For the numerical analysis of the problem, a non-axisymmetric
velocity vector satisfying equation (2.4) in cylindrical geometry can be expressed in
terms of two scalar potentials Ψ and Φ (Marqués 1990)

u =
1

s

∂Ψ

∂φ
ŝ +

(
∂Φ

∂z
− ∂Ψ

∂s

)
φ̂ − 1

s

∂Φ

∂φ
ẑ. (3.1)

An important advantage of using (3.1) is that the two scalar potentials are decoupled
for the velocity boundary condition on the stress-free or no-slip sidewall. In terms of
Ψ and Φ , the stress-free velocity condition on the sidewall becomes

Ψ =
∂

∂s

(
1

s

∂Ψ

∂s

)
=

∂

∂s

(
Φ

s

)
= 0 at s = Γ, (3.2)

while the non-slip velocity condition on the sidewall is imposed by

Ψ =
∂Ψ

∂s
= Φ = 0 at s = Γ. (3.3)

Making use of expression (3.1) and applying ẑ · ∇× and ŝ · ∇× on (2.3), we can derive
the three independent non-dimensional scalar equations,(

i2σ − E∇2
) [1

s

∂

∂s

(
s
∂Φ

∂z

)
−
(

∇2 − ∂2

∂z2

)
Ψ

]
+

2

s

∂2Φ

∂z∂φ
= 0, (3.4)

[
i2σ − E

(
∇2 +

2

s

∂

∂s
+

1

s2

)][
∂2Ψ

∂s∂z
−
(

∇2 − 1

s

∂

∂s
s

∂

∂s

)
Φ

]
− 2

s

∂2Ψ

∂z∂φ
− 2E

s

[
1

s

∂

∂s

(
s
∂2Φ

∂z2

)
−
(

∇2 − ∂2

∂z2

)
∂Ψ

∂z

]
− R

1

s

∂Θ

∂φ
= 0, (3.5)
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[∇2 − i2 (Pr/E) σ ]Θ − 1

s

∂Φ

∂φ
= 0. (3.6)

The convection problem is then solved numerically by using the Chebyshev-tau
method in which the potential fields, Φ and Ψ , and the temperature deviation, Θ , are
expanded in terms of the standard Chebyshev functions Tk(x):

Ψ (s, z, φ, t) = sm

[
N+2∑
k=0

Ψ̂k Tk

(
2s

Γ
− 1

)]
cos(nπz) exp i(mφ + 2σ t),

Φ(s, z, φ, t) = s(m+1)

[
N+1∑
k=0

Φ̂k Tk

(
2s

Γ
− 1

)]
sin(nπz) exp i(mφ + 2σ t),

Θ(s, z, φ, t) = sm

[
N+1∑
k=0

Θ̂k Tk

(
2s

Γ
− 1

)]
sin(nπz) exp i(mφ + 2σ t),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.7)

where m � 1, and Ψ̂k , Φ̂k and Θ̂k are complex coefficients. We shall take n = 1
in the numerical analysis because it always corresponds to the most unstable mode
of convective instabilities. Note that the factors sm and s(m+1) are imposed so that
the expansion at the rotation axis s = 0 is regular. For numerical solutions with
E � O(10−5), we need to take N = O(100) for an accuracy within 1%. Furthermore,
the velocity boundary conditions on the sidewall s = Γ must be enforced. For the
stress-free boundary condition we require that

N+2∑
k=0

Ψ̂k = 0,

N+1∑
k=0

(m + 2k2)Φ̂k = 0,

N+2∑
k=0

[
m(m − 2) + 2(2m − 1)k2 +

4k2

3
(k2 − 1)

]
Ψ̂k = 0;

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(3.8)

and the non-slip boundary conditions demand that

N+2∑
k=0

Ψ̂k = 0,

N+1∑
k=0

Φ̂k = 0,

N+2∑
k=0

(m + 2k2)Ψ̂k = 0. (3.9)

The temperature condition on the sidewall is imposed in a similar way.
The primary purpose of our numerical analysis is to provide a valuable comparison

with the results of the asymptotic analysis, which are valid only for small values of the
Ekman number. The main results of the numerical analysis for inertial convection are
shown in several tables below, together with those from the asymptotic analysis. In
our numerical computations, we plotted nearly all the numerical solutions of inertial
convection presented in the tables, demonstrating that the numerical solutions are
almost identical to the corresponding asymptotic solutions. Hence, few of the figures
from the numerical analysis are shown in the paper.

In the numerical analysis, we found that wall-localized convection is still preferred
in a rapidly rotating cylinder when the Prandtl number Pr is sufficiently large. It
is important to note that the wall-localized convection is marked by a very small
half-frequency σc = O(E) at Pr = O(1) as well as critical values of R and m that
are nearly independent of Pr. In contrast, inertial convection is marked by a high
frequency and critical values of R and m that are strongly dependent on Pr. In
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our numerical analysis, consequently, two different types of convection can be easily
distinguished by their characteristics.

Since the focus of the present study is on inertial convection and the phenomenon
of wall-localized convection is largely independent of cylindrical geometry, the rest
of the paper will not discuss wall-localized convection in detail.

4. Asymptotic analysis for inertial convection
4.1. Asymptotic solutions with stress-free sidewall

A key assumption in the following asymptotic analysis is that the velocity field of
inertial convection at leading order for E � 1 can be represented by a single inertial
wave mode while buoyancy forces appear only at the next order to drive the inertial
wave against the effects of viscous damping. This assumption allows a relatively
simple asymptotic solution to be derived in rotating cylindrical systems. It leads to
an asymptotic expansion in the form

u = u0 + (ui + ub), p = p0 + (pi + pb),

σ = σ0 + σ1, Θ = Θ0 + · · · , R = R0 + · · · ,

}
(4.1)

where ui and pi represent small perturbations to the leading-order solution u0 and
p0, and ub and pb denote perturbations in the Ekman boundary layer which are
non-zero only in the vicinity of the sidewall of the cylinder. While ui must be much
smaller than the zeroth-order velocity u0, |ui | � |u0|, the boundary flow ub has to
be large enough so that (ub + u0) satisfies the stress-free boundary condition on the
sidewall. However, the instability problem can be solved without having to determine
the detailed structure of the boundary-layer flow in the case of the stress-free sidewall.
Clearly, two conditions must be satisfied for expansion (4.1): E must be sufficiently
small, E � 1, and the modification of inertial-wave frequency by convection must be
also small, i.e. |σ1/σ0| � 1.

After substitution of expansion (4.1) into equations (2.3)–(2.4), the perturbation
solution (u0, p0, σ0) at the zeroth order represents the inviscid inertial wave, the basic
properties of which are discussed in the Appendix. The next-order problem in the
asymptotic analysis is given by

2 (iσ0 + ẑ×) (ui + ub) + ∇(pi + pb) = R0 ẑΘ0 + E∇2(u0 + ub) − i2σ1u0, (4.2)

∇ · (ui + ub) = 0, (4.3)

(∇2 − i2σ0E
−1Pr)Θ0 = − ẑ · u0. (4.4)

Two key features should be noted in the above equations. Physically, thermal effects
are coupled with an inertial wave mode at this order, driving inertial convection
against viscous dissipation. Mathematically, the inhomogeneous differential equation
(4.2) requires a solvability condition whose real part yields the Rayleigh number for
the onset of convection and whose imaginary part gives rise to a small correction of
the half-frequency of the inertial wave σ0.

An asymptotic solution of inertial convection contains three major elements.
The first is the asymptotic expression for the Rayleigh number R0 at the onset
of convection. Denoting the complex conjugate of u0 by u∗

0, which also satisfies
∇ · u∗

0 = 0, and making use of

〈u∗
0 · ∇(pi + pb)〉V = 0, (4.5)



Inertial convection in a rotating cylinder 455

〈u∗
0 · (iσo + ẑ×)(ui + ub)〉V = 0, (4.6)

where 〈 〉V denotes the volume integral over the cylinder, we can derive the solvability
condition for equation (4.2), the real part of which gives rise to the Rayleigh number
R0:

R0 =

{
〈|∇ × u0|2〉V − (2/Γ )〈|φ̂ · u0|2〉S

Re[〈u∗
0 · ẑΘ0〉V ]

}
E, (4.7)

where 〈 〉S represents the surface integral over the sidewall of the cylinder. While

analytical expressions can be derived in closed form for 〈|∇ × u0|2〉V and 〈|φ̂ · u0|2〉S ,
the solution Θ0 of the inhomogeneous heat equation (4.4) with a given ẑ · u0 on
its right-hand side cannot be found in closed form. The only way to solve (4.4)
conveniently is through an expansion of Θ0 in terms of the Bessel functions with
analytic coefficients. For the conducting sidewall, we can write

Θ0 = −2[Jm(ξ )]2σ0

π2

×
K∑

k=1

[
i
(
π2 + β2

k

/
Γ 2

)
+ 2σ0Pr/E

]
γ̂kJm(sβk/Γ ) sin πzei(mφ+2σ0t), (4.8)

where Jm(x) denotes the standard Bessel function,

γ̂k =
π3Γ 2β2

k

2σ 2
0

(
ξ 2 − β2

k

)2[(
π2 + β2

k

/
Γ 2

)2
+ (2σ0Pr/E)2

] , (4.9)

ξ = (πΓ )

√
1 − σ 2

0

σ 2
0

, (4.10)

and βk is chosen such that

Jm(βk) = 0, 0 < β1 < β2 < β3 < · · · .

It is significant to note that only a small number of terms in (4.8) is usually needed
in the expansion. For instance, three terms (K = 3) yield a solution such that the
Rayleigh number and the frequency at the onset of convection are accurate within
3%. For the insulating sidewall, we obtain

Θ0 = −2σ0[ξJm+1(ξ ) − mJm(ξ )]2

π2
(
β2

k − m2
)

×
K∑

k=1

[
i
(
π2 + β2

k

/
Γ 2

)
+ 2σ0Pr

/
E
]
γ̂kJm(sβk/Γ ) sin πzei(mφ+2σ0t), (4.11)

where γ̂k has the same form as that given in (4.9) except that βk are now the roots of
the equation

βkJm+1(βk) − mJm(βk) = 0, 0 < β1 < β2 < β3 < · · · .
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In the case of the boundary condition (2.7), the asymptotic expression for the Rayleigh
number R0 is given by the real part of the solvability condition,

R0 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2Γ 2π2

(
1 − σ 2

0

)2
IV (m) − σ 2

0 π [ξJm−1(ξ ) + m(σ0 − 1)Jm(ξ )]2

2Γ 2 [Jm(ξ )]2 σ 2
0

(
1 − σ 2

0

)2

[
K∑

k=1

(
π2 + β2

k

/
Γ 2

)
γ̂k

]
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭E, (4.12)

where the property (1.2) in the dimensionless form is used γ̂k is given by the analytical
expression (4.9) and

IV (m) =
π

16

[
qm−1

(1 − σ0)2
+

qm+1

(1 + σ0)2
+

2π2Γ 2qm

ξ 2σ 2
0

]
,

qj = [jJj (ξ ) − ξJj+1(ξ )]2 + (ξ 2 − j 2)[Jj (ξ )]2.

Physically we are interested in the smallest Rayleigh number R0, denoted by Rc, at
which convective instability can occur. However, the process of determining the most
unstable mode should be contrasted with ordinary convection problems such as the
Rayleigh–Bénard problem. In the present problem, it is not a question of finding a
wavenumber m that minimizes R0, but of determining the three-dimensional structure
of the flow as well as its approximate oscillation frequency by minimizing R0 in (4.12)
over different inertial wave modes.

An asymptotic solution for inertial convection is then obtained by the following
procedure. First, we minimize the expression of R0 by inserting into (4.12) different
inertial wave modes, such as those given in table 8. After determining on the basis
of (4.12) the critical Rayleigh number Rc, the critical wavenumber mc and the
corresponding σ0 (or l), we take the imaginary part of the solvability condition to
calculate the critical half-frequency, which corresponds to the second major element
in the asymptotic solution:

σc = σ0 −
{

σ0[Jmc
(ξ )]2(Rc/E)

IV (mc)

(
K∑

k=1

γ̂k

)}
Pr, (4.13)

where the analytical expression for γ̂k is again given by (4.9). Evidently, the effect
of convection is always to reduce the frequency of a purely inertial wave mode.
Moreover, the asymptotic expression is not valid when Pr = O(1), for which inertial
convection is no longer preferred. The third major element in the asymptotic solution
is the leading-order velocity of the convection, the inviscid inertial wave (A 13)–(A 15)
given in the Appendix. Expressions (4.8), (4.12)–(4.13) and (A 13)–(A 15) represent
an asymptotic solution of inertial convection in a rotating cylinder satisfying the
condition (2.7) for an arbitrary aspect ratio Γ .

It is profitable to examine the asymptotic scaling at small Pr before discussing the
detailed asymptotic and numerical results. Let us look at two different ranges of Pr
for a given small but non-zero E. In the first range 0 < Pr � E, the coefficients γ̂k are
O(1) for a given value of the wavenumber l = O(1) and m = O(1). Expression (4.12)
then gives R0 = O(E) independent of Pr while (4.13) shows that the deviation from
the inertial wave frequency is O(Pr). The second range is Pr 	 E, say, Pr = O(E1/2).
In this case, the coefficients γ̂k are O((E/Pr)2), expression (4.12) gives R0 = O(Pr2/E)
while (4.13) indicates that the deviation from σ0 is also O(Pr). In figure 1, we
illustrate several typical examples showing how the Rayleigh number R0 is dependent
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Figure 1. The value of R0 is shown as a function of Pr for E = 10−4 over different inertial
modes according to (4.12). Solid lines represent the inertial modes with l = 1 and dashed lines
the l = 2 modes. The sidewall of the cylinder is stress-free and conducting.

Pr l mc (Rc, σc)asymptotic (Rc, σc)numerical

0 1 1 (0.230, 0.781) (0.230, 0.781)
0.0025 1 2 (0.524, 0.607) (0.523, 0.607)
0.005 1 3 (1.021, 0.490) (1.017, 0.490)
0.01 2 4 (2.234, 0.410) (2.216, 0.410)
0.025 2 3 (7.260, 0.325) (7.145, 0.325)
0.05 3 5 (17.66, 0.246) (17.16, 0.247)
0.1 3 4 (44.04, 0.184) (42.02, 0.185)

Table 1. Several critical parameters at the onset of convection for different Prandtl numbers
in a rotating cylinder with a stress-free and conducting sidewall for E = 10−4 and Γ = 1. The
integer l indicates the radial structure of inertial convection. Both the fully numerical and
asymptotic solutions are shown.

on different inertial modes with increasing Pr. It suggests that the Rayleigh number
R0 is nearly independent of Pr in the range 0 < Pr � E while a slope of about 2
in the range Pr = O(E1/2) is evident on the right-hand side of the figure. We shall
discuss the Pr-dependence further in § 4.3.

Several typical critical parameters for Γ = 1 and E = 10−4, calculated from both
the asymptotic expressions and the full numerical solution, are shown in table 1. The
index l, indicating the radial structure of the convective flow, is also shown in the
table. It is worth noting that, though a sum over γ̂k appears in the expressions,
the number of terms required in (4.12)–(4.13) is rather small. For example, three
terms (K = 3) give Rc = 7.52, σc = 0.325 for Γ = 1 and Pr = 0.025 while an
asymptotically large K(	1) yields Rc = 7.26, σc = 0.325. The asymptotic solution
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(a) (b)

Figure 2. Contours of us two asymptotic solutions in a horizontal plane for Γ = 1 and
E =10−4: (a) Pr =0.005 with the critical parameters mc = 3, Rc = 1.021, σc = 0.490 and
(b) Pr = 0.025 with mc = 3, Rc =7.26, σc = 0.325. The sidewall of the cylinder is stress-free
and conducting.

shows a quantitative agreement with the fully numerical solution for all Pr � O(0.1).
An important feature of inertial convection in a rotating cylinder is that the critical
wavenumber mc does not generally increase with increasing Pr as in the case of
spherical geometry. This is due to the fact that different values of σ0 correspond
to different radial structures of the convective motion. Various combinations of the
azimuthal and radial structure, dependent upon the size of Pr, can achieve the most
unstable state of convection. In this sense, the dynamics of convection and its pattern
selection in a rotating cylinder are richer than in other systems such as a rotating
sphere. The selection process is clearly illustrated in figure 1. For instance, convection
selects the inertial mode with mc = 3 and l = 1 at log10 Pr = log10 0.005 = −2.3 while
the mode with mc =3 and l = 2 becomes preferred at log10 Pr = log10 0.025 = − 1.60.
Figure 2 shows the spatial structure of two asymptotic solutions for a rotating
cylinder with Γ = 1 at E =10−4 for Pr = 0.005 and Pr = 0.025. Though both the
solutions have the same critical wavenumber mc = 3, the radial structures are quite
different. The solution for σc = 0.490 (l = 1) and Pr= 0.005 has one radial layer,
while two radial layers (l = 2) are exhibited by the solution with σc =0.325(l = 2) and
Pr= 0.025.

Since the radial structure represents a key feature of inertial convection, it is of
interest to look at the effect of larger aspect ratios, which allow a more complex
radial structure in the flow. Several typical critical parameters of inertial convection
for E = 10−4 with Γ = 2, calculated from both the asymptotic expressions and full
numerics, are displayed in table 2. This again shows an irregular dependence of the
critical wavenumber mc on the Prandtl number Pr. Two asymptotic solutions for
inertial convection in a cylinder with Γ = 2 at E = 10−4 are shown in figure 3 for
Pr = 0.01 and Pr = 0.05. These two asymptotic solutions have the same critical
wavenumber mc = 10, but there is a single radial layer for the solution with σc =
0.408(l = 1) and Pr = 0.01, while there are four radial layers for σc = 0.232(l = 4)
and Pr = 0.05.

When the sidewall of a cylinder is subject to the stress-free and insulating condition
given by (2.8), the asymptotic analysis can be carried out in the same way, yielding
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Pr l mc (Rc, σc)asymptotic (Rc, σc)numerical

0 1 1 (0.159, −0.778) (0.159, −0.778)
0.0025 1 5 (0.516, 0.621) (0.515, 0.621)
0.005 1 7 (1.048, 0.516) (1.044, 0.516)
0.01 1 10 (2.345, 0.408) (2.331, 0.408)
0.025 1 15 (7.394, 0.298) (7.306, 0.298)
0.05 4 10 (18.08, 0.233) (17.72, 0.233)
0.1 5 12 (44.98, 0.180) (43.17, 0.180)

Table 2. Several critical parameters at the onset of convection for different Prandtl numbers
in a rotating cylinder with the stress-free and conducting sidewall for E = 10−4 and Γ = 2.
Both the fully numerical and asymptotic solutions are shown.

(a) (b)

Figure 3. Contours of us for the asymptotic solutions in a horizontal plane for Γ = 2 and
E = 10−4: (a) Pr = 0.01 with the critical parameters mc = 10, Rc = 2.345, σc =0.408 and (b)
Pr = 0.05 with mc = 10, Rc = 18.08, σc =0.233. The sidewall of the cylinder is stress-free and
conducting.

an asymptotic expression for the Rayleigh number R0:

R0 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2Γ 2π2

(
1 − σ 2

0

)2
IV (m) − σ 2

0 π [ξJm−1(ξ ) + m(σ0 − 1)Jm(ξ )]2

2Γ 2 [ξJm+1(ξ ) − mJm(ξ )]2 σ 2
0

(
1 − σ 2

0

)2

[
K∑

k=1

(
π2 + β2

k

/
Γ 2

)(
β2

k − m2
) γ̂k

]
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭E, (4.14)

where the analytical expression for γ̂k is again given by (4.9). After determining
the values of Rc, σ0 and mc through (4.14) we calculate the corresponding critical
half-frequency σc,

σc = σ0 −
{

σ0(Rc/E)[ξJmc+1(ξ ) − mJmc
(ξ )]2

IV (mc)

} (
K∑

k=1

γ̂k

β2
k − m2

)
Pr. (4.15)

The leading-order velocity for inertial convection is still given by (A 13)–(A 15).
Expressions (4.11), (4.14)–(4.15) as well as (A 13)–(A 15) represent the asymptotic
solution for inertial convection in a rapidly rotating cylinder (E � 1) satisfying the
condition (2.8) for an arbitrary aspect ratio Γ . Several typical critical parameters of
inertial convection for E =10−4 and Γ = 1 are shown in table 3. It is particularly
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Pr l mc (Rc, σc)asymptotic (Rc, σc)numerical

0 1 1 (0.103, 0.781) (0.102, 0.781)
0.0025 1 3 (0.503, 0.490) (0.502, 0.490)
0.005 1 4 (1.110, 0.411) (1.110, 0.411)
0.01 2 2 (2.459, 0.387) (2.442, 0.387)
0.025 3 2 (7.694, 0.276) (7.634, 0.276)
0.05 4 1 (18.90, 0.239) (18.33, 0.239)
0.1 5 1 (46.66, 0.181) (44.25, 0.182)

Table 3. Several critical parameters at the onset of convection for different Prandtl numbers
in a rotating cylinder with a stress-free and insulating sidewall for E = 10−4 and Γ = 1. Both
the fully numerical and analytical solutions are shown.

(a) (b) (c)

Figure 4. Contours of Θ0 for three asymptotic solutions in the middle plane (z = 0.5) for a
cylinder with Γ = 1 at E =10−4: (a) Pr = 0 with mc = 1, Rc = 0.103, σc = 0.781, (b) Pr = 0.05
with mc =1, Rc = 18.90, σc = 0.239 and (c) Pr = 0.1 with mc = 1, Rc = 46.6, σc = 0.181. The
sidewall of the cylinder is stress-free and insulating.

interesting to compare the structures of the three asymptotic solutions with the same
wavenumber mc = 1 for different values of Pr. The temperature fields Θ0 of the
three solutions with Γ =1 are depicted in figure 4 for Pr =0, 0.05, 0.1 at E = 10−4.
They illustrate how the effect of the Prandtl number alters the radial structure of
convection: from the simplest radial structure at Pr = 0 to the five radial-layer pattern
at Pr= 0.1. When the Prandtl number increases further Pr > O(0.1), the inertial
mode no longer represents the preferred form of convection. We will be discuss the
transition from inertial to wall-localized convection later in § 4.3.

4.2. Asymptotic solutions with a rigid sidewall

The asymptotic analysis in a rigid-sidewall cylinder is slightly more complicated
because the Ekman boundary layer cannot be treated implicitly in terms of a surface
integral as in the case of a stress-free sidewall. For the interior flow of inertial
convection, we assume the following perturbation expansion for E � 1:

u = u0 + u1, p = p0 + p1,

σ = σ0 + σ1, Θ = Θ0 + · · · , R = R0 + · · · ,

}
(4.16)

where u1 and p1 represent the perturbation of the interior solution. We also make a
similar expansion for the Ekman boundary layer in the vicinity of the rigid sidewall
at s = Γ :

ub = ũ0 + ũ1, pb = p̃0 + p̃1, (4.17)
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where ub is the Ekman boundary-layer flow and ũ0 = O(1), ũ1 = O(E1/2). After
substitution of expansion (4.16) into (2.3)–(2.5), the zeroth order of the interior
problem is the same as that for the stress-free sidewall given by (A 1)–(A 2). The
governing equations for the perturbation of the interior flow are

i2σou1 + 2 ẑ × u1 + ∇p1 = R0 ẑΘ0 + E∇2u0 − i2σ1u0, (4.18)

∇ · u1 = 0. (4.19)

(∇2 − i2σoE
−1Pr)Θ0 = − ẑ · u0, (4.20)

where we have kept the term, E�2u0, for the interior dissipation which is, as we will
show later, of the same order of magnitude as that for the boundary-layer dissipation.
Because of the rigid sidewall, (4.6) is no longer valid. Instead, the volume integral
becomes

〈u∗
0 · (i2σ0u1 + 2k × u1)〉V = Γ

∫ 1

0

∫ 2π

0

p∗
0 ŝ · u1dφ dz (4.21)

on the sidewall, and ŝ · u1 must be matched to the flux from the Ekman boundary
layer at the sidewall.

After a straightforward analysis for the Ekman boundary layer on the sidewall,
which provides the matching condition for (4.21), a solvability condition for the
inhomogeneous differential equation (4.18) can be readily derived. For a conducting
sidewall, the real part of the solvability condition yields the Rayleigh number for the
onset of convection:

R0 =
4Γ π2IV (m)b2E+

√
|σ0|

{
πσ 2

0 [ξJm−1(ξ ) + m(σ0 − 1)Jm(ξ )]2 +Γ 2b2π3[Jm(ξ )]2
}
E1/2

4Γ σ 2
0 b2 [Jm(ξ )]2

[
K∑

k=1

(
π2+β2

n/Γ
2
)
γ̂k

] ,

(4.22)

where b2 = (1 − σ 2
0 )2 and the analytical expression for γ̂k is given by (4.9). The

first term in the numerator of (4.22), proportional to E, represents the effect of the
internal viscous dissipation. The second term in the numerator of (4.22), proportional
to E1/2, results from the Ekman boundary-layer flux on the sidewall given by (4.21),
representing the effect of the boundary-layer viscous dissipation.

To determine the critical Rayleigh number Rc, the associated critical wavenumber
mc and leading-order half-frequency σ0 we first minimize R0 as given by (4.22) with
respect to different three-dimensional inertial modes. We then use the imaginary part
of the solvability condition to determine the critical half-frequency, σc, the second
element in the asymptotic solution:

σc = σ0 − σ0(Rc/E)[Jmc
(ξ )]2

IV (mc)

(
K∑

k=1

γ̂k

)
Pr − σ0

8IV (mc)
√

|σ0|

×
{

π

b2Γ
[ξJmc−1(ξ ) + mc(σ0 − 1)Jmc

(ξ )]2 +
Γ π3

σ 2
0

[Jmc
(ξ )]2

}
E1/2. (4.23)

It is important to note that, while it appears that the two terms in the numerator
of (4.22) are of quite different orders of magnitude in the limit E � 1, they are of the
same order of magnitude for the convection mode minimizing R0 at small, but finite
values of Pr. This is caused by the fact that we have not denoted explicitly the E-
dependence of the minimizing wavenumber nor that of the corresponding frequency
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σc. In this connection it is of interest to look at the oscillatory instability in a rapidly
rotating (E � 1) unbounded (Γ → ∞) Bénard layer with two stress-free horizontal
bounding surfaces. Because of the absence of sidewalls we can minimize the Rayleigh
number with respect to the total horizontal wavenumber, a2 = a2

x + a2
y , which yields

for the critical wavenumber ac:

ac ∼ (
√

2πPr)1/3 E−1/3 as E → 0, (4.24)

for a fixed small Prandtl number 0 < Pr � 1. By inserting (4.24) into the corresponding
expressions for the critical Rayleigh number and half-frequency, we can obtain the
asymptotic expressions for the critical values of Rc and σc:

Rc ∼ 6(
√

2πPr)4/3 E−1/3, (4.25)

σc ∼
√

2

2
(
√

2πPr−1)2/3 E1/3, (4.26)

valid for E � 1 at a fixed small Pr. The interior viscous dissipation of this solution is
of the order EE−2/3, while the contribution from the Ekman layer at the sidewall is
of the order Γ EE−1/3/δE , where δE is the Ekman layer thickness which for motions
with the frequency σc is of the order E1/3. For aspect ratios Γ of the order unity we
thus find that the two contributions are of the same order of magnitude in the limit
E � 1 at a fixed small Pr. The next-order term neglected in (4.22), which involves
the O(E1/2) secondary flows in both the Ekman layer and the interior, would be of
the order E1/2 smaller than that given by (4.22).

The third element in the asymptotic solution, the corresponding velocity of leading-
order inertial convection, is given in the complex form by

ŝ · u =
−i cos πz

2
(
1 − σ 2

0

) [σ0ξ

Γ
Jmc−1

(
ξs

Γ

)
+

mc(1 − σ0)

s
Jmc

(
ξs

Γ

)]
ei(mcφ+2σ0t), (4.27)

φ̂ · u =
cos πz

2
(
1 − σ 2

0

) {[ ξ
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ξs

Γ

)
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−
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Γ
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e−γ (Γ −s)

}
ei(mcφ+2σ0t), (4.28)

ẑ · u =
−iπ sin πz

2σ0

[
Jmc

(
ξs

Γ

)
− Jmc

(ξ ) e−γ (Γ −s)

]
ei(mcφ+2σ0t), (4.29)

with γ =
√

|σ0|/E (1 + iσ0/|σ0|). Several typical critical parameters of inertial
convection for E = 10−4, calculated from both the asymptotic expressions and full
numerics, are shown in table 4 for the rigid and conducting sidewall with different
values of Pr.

In figure 5, we show the spatial structure of two asymptotic solutions in a rotating
cylinder with Γ = 1 at E =10−4 for Pr = 0.005 and Pr = 0.025. While the solution for
Pr= 0.005 has the critical wavenumber mc = 3, the solution for Pr =0.025 has mc =7.
But both the solutions have a similar two-radial-layer structure.
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Pr l mc (Rc, σc)asymptotic (Rc, σc)numerical

0 1 1 (0.763, 0.779) (0.753, 0.779)
0.0025 1 2 (1.603, −0.455) (1.607, −0.455)
0.005 1 3 (2.515, 0.485) (2.522, 0.484)
0.01 1 5 (4.320, 0.350) (4.326, 0.349)
0.025 1 7 (10.49, 0.271) (10.46, 0.271)
0.05 2 6 (22.57, 0.217) (22.24, 0.217)
0.1 3 6 (51.09, 0.164) (49.71, 0.164)

Table 4. Several critical parameters at the onset of convection for different Prandtl numbers
in a rotating cylinder with Γ = 1 and E =10−4. Both the fully numerical and asymptotic
solutions are shown. The sidewall of the cylinder is rigid and conducting.

(a) (b)

Figure 5. Contours of uφ for two asymptotic solutions at z =0.25 for a cylinder with Γ = 1

at E =10−4: (a) Pr = 0.005 with the critical parameters mc = 3, Rc = 2.515, σc =0.485 and
(b) Pr = 0.025 with mc = 7, Rc = 10.49, σc = 0.271. The sidewall of the cylinder is rigid and
conducting.

In the case of an insulating sidewall, a similar asymptotic analysis for inertial
convection can be carried out, which gives

R0 =
4Γ π2IV (m)b2E +

√
|σ0|

{
πσ 2

0 [ξJm−1(ξ ) + m(σ0 − 1)Jm(ξ )]2 + Γ 2b2π3J 2
m(ξ )
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[
K∑

k=1

(
π2 + β2

k /Γ
2
)(

β2
k − m2

) γ̂k

] .

(4.30)

This determines the critical Rayleigh number Rc, the critical wavenumber mc and the
leading-order half-frequency σ0. The critical half-frequency σc is then given by

σc = σ0 − σ0(Rc/E)[ξJmc+1(ξ ) − mcJmc
(ξ )]2

IV (mc)

(
K∑

k=1

γ̂k

β2
k − m2

)
Pr − σ0

8IV (mc)
√

|σ0|

×
{

π

b2Γ
[ξJmc−1(ξ ) + mc(σ0 − 1)Jmc

(ξ )]2 +
Γ π3

σ 2
0

[Jmc
(ξ )]2

}
E1/2. (4.31)

Before discussing the detailed result, we first look at the asymptotic scaling at small
Pr. Similar to what was discussed in the preceding section, we consider two different
ranges of Pr for a given small but non-zero E. In the first range 0 < Pr � E, the
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Figure 6. The Rayleigh number R0 is shown as a function of Pr for different inertial modes
according to (4.30) for E = 10−4. The first number in the bracket denotes the azimuthal
wavenumber m while the second number is l relating to the radial structure of inertial
convection. The sidewall of the cylinder is rigid and insulating and Γ = 1.

coefficients γ̂k are O(1) for a given value of the wavenumber l = O(1) and m = O(1).
Expression (4.30) gives R0 = O(E1/2) while (4.31) indicates that the deviation from
the inviscid half-frequency σ0 is O(E1/2). In the second range Pr = O(E1/2), the
coefficients γ̂k are O((E/Pr)2), expression (4.30) gives R0 = O(Pr2/E3/2) while (4.31)
shows that the deviation from σ0 is O(Pr/E1/2). In this simple scaling estimate, we
have assumed that l = O(1) and m = O(1) which is of course not generally correct at
the onset of convection. The Pr-dependence of the problem is quite complicated and
will be discussed further in § 4.3.

A typical selection process for the convection pattern is illustrated in figure 6,
showing how R0 is dependent on different inertial modes in a rotating cylinder with a
rigid sidewall. Generally speaking, (l2+m2) increases monotonically with increasing Pr
when either the radial scale or the azimuthal scale or both decrease. For example, for
log10 Pr = log10(0.025) = − 1.6, the convection system selects the inertial mode with
mc = 2 and l =3, while the inertial mode with mc =2 but l =4 becomes preferred at
log10 Pr = log10(0.05) = −1.30. When Pr increases to log10 Pr = log10(0.1) = −1.0, the
preferred convection is related to the inertial mode with mc =2 and l = 5. For larger
values of Pr>O(0.1), the inertial convection changes to the wall-localized convection
for which the present analysis is no longer applicable. This will be discussed further
in § 4.3.

Several typical critical parameters for inertial convection, calculated from both the
asymptotic expressions and full numerics, are shown in table 5 for the case Γ = 1 and
in table 6 for Γ = 2. Two asymptotic solutions in a cylinder with Γ = 1 for Pr = 0.01
and Pr = 0.1 are depicted in figure 7, both showing a multi-radial-layer structure as
the azimuthal wavenumber increases from mc =1 at Pr =0.01 to mc = 2 at Pr = 0.1.
A particularly interesting case, which is shown in figure 8 for Γ = 2, is the reversed
direction of the wavenumber change. The critical wavenumber mc decreases with
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Pr l mc (Rc, σc)asymptotic (Rc, σc)numerical

0 1 1 (0.340, 0.779) (0.358, 0.779)
0.0025 1 3 (1.238, 0.485) (1.243, 0.485)
0.005 1 4 (2.249, 0.405) (2.240, 0.405)
0.01 3 1 (4.262, 0.325) (4.298, 0.326)
0.025 3 2 (10.96, 0.270) (10.71, 0.271)
0.05 4 2 (23.28, 0.205) (22.84, 0.206)
0.1 5 1 (52.82, 0.157) (51.08, 0.159)

Table 5. Several critical parameters at the onset of convection for different Prandtl numbers
for E = 10−4 and Γ = 1. Both the fully numerical and asymptotic solutions are shown. The
sidewall of the cylinder is rigid and insulating.

Pr l mc (Rc, σc)asymptotic (Rc, σc)numerical

0 2 1 (0.279, 0.747) (0.281, 0.747)
0.0025 2 4 (0.914, 0.525) (0.915, 0.525)
0.005 4 6 (1.712, 0.436) (1.705, 0.436)
0.01 6 3 (3.418, 0.377) (3.390, 0.377)
0.025 7 3 (9.195, 0.271) (9.111, 0.271)
0.05 10 2 (20.82, 0.219) (20.40, 0.219)
0.1 13 2 (49.06, 0.168) (47.24, 0.169)

Table 6. Several critical parameters at the onset of convection for different Prandtl numbers
for E = 10−4 and Γ = 2. Both the fully numerical and asymptotic solutions are shown. The
sidewall of the cylinder is rigid and insulating.

(a) (b)

Figure 7. Contours of uφ for two asymptotic solutions in the z =0.25 plane for a cylinder

with Γ = 1 at E = 10−4: (a) Pr = 0.01 with critical parameters mc = 1, Rc = 4.26, σc = 0.325
and (b) Pr = 0.1 with mc = 2, Rc = 52.82, σc = 0.157. The sidewall of the cylinder is rigid and
insulating.

increasing Pr: from mc =6 at Pr= 0.005 to mc =3 at Pr =0.025 to mc =2 at Pr =0.1.
At the same time, the radial structure of the convection changes from three radial
layers at Pr= 0.005 with mc = 6 to six radial layers at Pr = 0.01 with mc = 3 to ten
radial layers at Pr= 0.01 with mc = 2. Though the patterns of convection appear
to be quite complex, it is remarkable that they are represented by relatively simple
analytical functions given by (4.27)–(4.29).
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(a) (b) (c)

Figure 8. Contours of uφ of three asymptotic solutions in the z =0.25 plane for a cylinder

with Γ = 2 at E = 10−4: (a) Pr = 0.005 with mc = 6, Rc = 1.712, σc = 0.436, (b) Pr = 0.025 with
mc = 3, Rc = 9.19, σc = 0.271 and (c) Pr = 0.1 with mc = 2, Rc = 49.06, σc = 0.168. The sidewall
of the cylinder is rigid and insulating.

E l mc (Rc, σc)asymptotic (Rc, σc)numerical

10−2 1 1 (12.85, 0.751) (14.04, 0.750)
10−3 1 2 (3.505, 0.585) (3.639, 0.586)
5 × 10−4 1 3 (3.540, 0.474) (3.654, 0.475)
10−4 3 1 (4.262, 0.325) (4.298, 0.326)
5 × 10−5 3 2 (4.765, 0.277) (4.744, 0.277)
10−5 6 1 (6.536, 0.166) (6.530, 0.166)
5 × 10−6 7 1 (7.719, 0.142) (7.667, 0.142)

Table 7. Several critical parameters at the onset of convection for different Ekman numbers
for Pr =0.01 and Γ = 1. Both the fully numerical and asymptotic solutions are shown. The
sidewall of the cylinder is rigid and insulating.

We have so far concentrated on the case with the Ekman number E = 10−4. It is
of considerable interest to look at how the asymptotic solution and fully numerical
solution are dependent upon the Ekman number E. Several critical parameters for
inertial convection, calculated from both the asymptotic expressions and full numerics,
are shown in table 7 for various Ekman numbers with Γ = 1. It is found that, as
expected, the agreement between the asymptotic and fully numerical solutions is
satisfactory only when the Ekman number is sufficiently small, E � 10−3. In contrast
to convection in rotating spheres, the critical wavenumber mc can decrease with
decreasing E: from mc = 3 at E = 5 × 10−4 to mc = 1 at E = 5 × 10−6 to mc =1. The
change in the azimuthal wavenumber signifies the change in the radial structure of
convection from the single radial layer to multiple layers. Displayed in figure 9 is the
asymptotic solution in a cylinder with Γ = 1 for Pr= 0.01 and E = 5 × 10−6, showing
a seven-radial-layer structure with the azimuthal wavenumber mc = 1.

4.3. The Pr-dependence: inertial vs. wall-localized modes

Two conditions must be satisfied for the validity of asymptotic expansions like (4.16):
the Ekman number E must be sufficiently small, E � 1, and the modification of the
inertial-wave frequency by convection must be also sufficiently small, i.e. |σ1/σ0| � 1.
The second condition implies that Pr must be sufficiently small compared to unity.

For a given small E, it is difficult to identify the precise value of Pr, P̂r, such that

the asymptotic solution is mathematically valid for 0 � Pr � P̂r . This is mainly
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(a) (b)

Figure 9. Contours of (a) uφ and (b) Θ for the asymptotic solution in the z = 0.25 plane for

a cylinder with Γ = 1 at E = 5 × 10−6 and Pr = 0.01. The sidewall of the cylinder is rigid and
insulating.

caused by the fact that a simple solution for (2.5) cannot be obtained and, hence, the
dependence between E and Pr is implicit.

The question of the mathematically valid domain for Pr is, however, physically
unimportant. This is because there exist only two different types of convection in
a rapidly (E � 1) rotating cylinder with Γ = O(1): inertial convection preferred for
0 � Pr � Pr∗ and wall-localized convection preferred for Pr∗ � Pr< ∞, where Pr∗

denotes the values of Pr at which the switch from the inertial to wall-localized
mode occurs. Our analysis suggests that Pr∗< P̂r, i.e. the asymptotic solution may be
still mathematically valid in the sense that it gives a satisfactory approximation to
equations (2.3)–(2.5) but is no longer physically relevant.

Let us illustrate this by looking at an example in a rotating cylinder with the no-
slip and insulating sidewall for E = 10−4 and Γ = 1. In this case, inertial convection
described by the present asymptotic solution is preferred in the range 0 � Pr < 0.115
while wall-localized convection becomes preferred for 0.115 < Pr < ∞. The switch-
over from the inertial to wall-localized convection takes place at Pr∗ ≈ 0.115.
Figure 10 shows two convection solutions for Pr= 0.11 and Pr= 0.12 in the vicinity
of the crossover. While the asymptotic solution (4.30) and (4.31) gives rise to
R0 = 65, σ =0.14, m =1, l =6 at Pr= 0.12 (which exceeds Pr∗) the fully numerical
solution yields R0 = 64, σ =0.14, m =1 for this value of Pr. This means that the
asymptotic solution for inertial convection still represents a reasonably accurate
approximation. But it is the wall-localized convection characterized by a smaller

Rayleigh number at R0 = 60 that is physically realizable. Since Pr∗ < P̂r, the precise

size of P̂r is of less interest and of secondary importance.
Evidently, the crossover value Pr∗ cannot be determined by the current asymptotic

theory, such as (4.30), alone. It can only be determined by comparing (4.30) to the
corresponding expression for wall-localized convection (Herrmann & Busse 1993;
Liao, Zhang & Chang 2006),

(Rc)inertial(Pr∗, E) = (Rc)wall(Pr∗, E), (4.32)

which can in principle, be solved for the value of Pr∗ at a given small E, providing
the physically valid domain of inertial convection for Pr: 0 � Pr � Pr∗. In the case
of a rotating cylinder with the no-slip and insulating sidewall for E =10−4 and Γ = 1,
this comparison yields Pr∗ ≈ 0.115.



468 Keke Zhang, Xinhao Liao and F. H. Busse

(a) (b)

Figure 10. Contours of the azimuthal flow uφ for two convection solutions (the most
unstable modes) in the z = 0.25 plane for a cylinder with Γ = 1 at E = 10−4: (a) Pr =
0.11 with mc = 2, Rc = 56.76, σc =0.157 (inertial convection) and (b) Pr = 0.12 with
mc = 5, Rc = 60.49, σc = 0.0183 (wall-localized convection). The sidewall of the cylinder is rigid
and insulating. The switch from the inertial to wall-localized mode occurs at Pr ≈ 0.115.

5. Summary and remarks
This paper presents the first asymptotic theory for inertial convection in a rotating

fluid cylinder. We have investigated, both numerically and analytically, inertial
convection in a rotating cylinder heated uniformly from below. In the asymptotic
analysis, the primary assumption is that the convective flow at leading order can be
represented by one or several inertial wave modes. Buoyancy forces do not change the
flow at the leading order but appear at next order to drive the inertial modes against
the effects of viscous damping. In particular, we show that agreement between the
asymptotic and numerical solutions is satisfactory in all the cases for moderately small
E = 10−4. It is shown that the extremely complicated and seemly incomprehensible
behaviour of convection in a rotating cylinder (see, for example, Goldstein et al.
1993, 1994) can be readily understood in the framework of small perturbations from
solutions of the partial differential equation describing inertial waves.

In rapidly rotating cylinders, the dynamics of convection appears to be quite clear:
convection is either of the inertial-wave type or of the wall-localized type. While
inertial convection is preferred for small Prandtl numbers (weak effects of viscosity),
wall-attached convection is preferred for large Prandtl numbers (strong effects of
viscosity). The deeper reason for this behaviour is the effect of rapid rotation
that constrains convection and strongly stabilizes the state of pure conduction.
Wall-attached convection, which is largely independent of the cylindrical geometry,
is preferred when the constraint is broken by viscous forces in association with
small-scale convective flows. Inertial convection, which is critically influenced by the
cylindrical geometry, offers an alternative at low Prandtl numbers when the rotational
constraint on steady or quasi-steady forms of convection becomes too strong.

It is worth noting that we did not present our results in terms of the usual (Pr, mc)
or (Pr, ωc) dependence, as frequently used for problems of convection in other
geometries. Instead, the main results on inertial convection are primarily presented
in tables. This style of our presentation reflects the nature of inertial convection. In
general, there are no smooth connections between different convection modes. This is
because the convection system selects its preferred pattern from a large manifold of
all the inertial wave modes. In other words, a key feature in the present problem is
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that the minimization must be done over a two-dimensional manifold of inertial wave
modes through the evaluation of analytical expressions such as (4.12). This typically
leads to a non-smooth dependence of properties like radial structure and azimuthal
wavenumber of the preferred form of convection on the external parameters.

This work started in a 2004 summer workshop at the Newton Institute of Cambridge
University. K.Z. would like to acknowledge helpful discussions with Professor E.
Knobloch and is supported by UK PPARC, NERC and Leverhulme grants. X.L. is
supported by NSFC grants 10633030. The numerical computation is supported by
Shanghai Supercomputer Center.

Appendix
The zeroth order of the perturbation problem, resulting from the substitution of

expansion (4.1) into equations (2.3)–(2.4), is given by

i2σ0u0 + 2 ẑ × u0 + ∇p0 = 0, (A 1)

∇ · u0 = 0, (A 2)

where (u0, p0) denotes the solutions of the inviscid inertial wave obtained at E =0
and σ0 is the half-frequency of the wave. For completeness, we shall discuss briefly
the basic properties of the inertial wave in a rotating cylinder.

As a consequence of reducing the second-order differential equation (2.3) to the
first-order equation (A 1), the existence of viscous boundary layers on the walls is
not permitted. The velocity boundary condition is then relaxed to the condition of
vanishing normal flow,

n̂ · u0 = 0, (A 3)

at the bounding surface of the cylinder, where n̂ denotes the unit normal. It is the
condition ŝ · u0 = 0 at the sidewall, however, that determines the eigenvalue, σ0, of the
problem (see, for example, Greenspan 1968). Solutions to (A 1)–(A 2) can be cast in
the form

u0 = u0(s, z)e
i(mφ+2σ0t),

p0 = p0(s, z)e
i(mφ+2σ0t),

}
(A 4)

where m is the azimuthal wavenumber which is assumed to be positive. After simple
mathematical manipulation, we can conveniently express the velocity components in
terms of the pressure p0:

ŝ · u0 = − i

2
(
1 − σ 2

0

) (σ0

∂p0

∂s
+

mp0

s

)
, (A 5)

φ̂ · u0 =
1

2
(
1 − σ 2

0

) (∂p0

∂s
+

mσ0p0

s

)
, (A 6)

ẑ · u0 =
i

2σ0

∂p0

∂z
. (A 7)

The elimination of the velocity u0 from (A 1)–(A 2) results in a single equation for
the pressure: (

1

s

∂

∂s
+

∂2

∂s2
− m2

s2

)
p0 −

(
1 − σ 2

0

σ 2
0

)
∂2p0

∂z2
= 0, (A 8)
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which is usually referred to as the Poincaré equation, a hyperbolic partial differential
equation when 0 < |σ0| < 1. The inviscid boundary condition in terms of the pressure
becomes

∂p0

∂z
= 0 at z = 0, 1 (A 9)

and

σ0

∂p0

∂s
+

m

s

∂p0

∂s
= 0 at s = Γ. (A 10)

The Poincaré equation subject to the boundary condition (A 9)–(A 10) forms an
eigenvalue problem with a special property that the eigenvalue appears in both the
boundary condition and the governing equation. Solutions of separable variables for
the Poincaré equation satisfying the condition (A 9) can be written in the form

p0(s, z) = Jm

(
ξs

Γ

)
cos (nπz) , (A 11)

where Jm(x) denotes the standard Bessel function and ξ is a solution of the
transcendental equation

ξ
dJm(ξ )

dξ
+

mσ0

|σ0|

[
1 +

(
ξ

Γ nπ

)2
]1/2

Jm(ξ ) = 0. (A 12)

The substitution of (A 11) into (A 5)–(A 7) yields the expressions of u0 for the inertial
waves in a rotating cylinder:

ŝ · u0 =
−i

2
(
1 − σ 2

0

) [σ0ξ

Γ
Jm−1

(
ξs

Γ

)
+

m(1 − σ0)

s
Jm

(
ξs

Γ

)]
cos nπz, (A 13)

φ̂ · u0 =
1

2
(
1 − σ 2

0

) [ ξ

Γ
Jm−1

(
ξs

Γ

)
− m(1 − σ0)

s
Jm

(
ξs

Γ

)]
cos nπz, (A 14)

ẑ · u0 =
−inπ

2σ0

[
Jm

(
ξs

Γ

)]
sin nπz. (A 15)

In the context of inertial convection, only the inertial modes of the simplest z-structure
with n= 1 are relevant to the most unstable mode of convective instabilities.

An inertial wave mode in a rotating cylinder can be described by a set of the triple
numbers (m, n, σ0): the wavenumber m always indicates the azimuthal scale of an
inertial wave, n is related to the vertical structure and the size of σ0 is indicative of
not only how fast the wave propagates, but also of its radial structure. It is worth
mentioning two important properties of the inertial wave solution: |σ0| < 1 for all the
inertial oscillation modes, and the orthogonal relationship∫ 1

0

∫ 2π

0

∫ Γ

0

u0j (σ0j ) · u∗
0k(σ0k) sds dφ dz = 0 if σ0j �= σ0k,

where u∗
0k denotes the complex conjugate of u0k , which will be used in our asymptotic

analysis.
For a given wavenumber m, we can arrange all the inertial wave modes in the order

of the largest positive, the second largest positive and so on. Negative half-frequencies
can be arranged in the same way based on their absolute sizes. Several examples of
the largest positive half-frequencies for the wavenumbers m =1, 2 and m =3 are given
in table 8. To illustrate the radial structure of an inertial mode, we may attach an
integer number l to each inertial mode according to the size of its half-frequency σ0.
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l σ0(m = 1) σ0(m = 2) σ0(m = 3)

1 0.7808 0.6076 0.4921
2 0.4825 0.3914 0.3316
3 0.3338 0.2843 0.2495
4 0.2527 0.2224 0.1999
5 0.2026 0.1824 0.1666
6 0.1689 0.1544 0.1429

Table 8. Several largest positive σ0 for three azimuthal wavenumbers with n= 1 and Γ = 1.
The integer number (l − 1) corresponds to the number of zeros of ŝ0 · u0 = 0 in 0 < s < Γ .

For example, the m =1 inertial mode with the largest positive σ0 = 0.7808 is labelled
by an integer l = 1 for which the radial component of the velocity ŝ0 · u0 has no zero
for 0 < s < Γ . For the second inertial mode (l = 2) with σ0 = 0.4825 there is one zero
for 0 < s < Γ . In general, the lth inertial mode has (l − 1) zeros for 0 < s < Γ .
Furthermore it should be emphasized that u0 satisfies neither the stress-free nor the
no-slip condition on the sidewall.
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